Feasibility study of a rail vehicle damper fault detection by artificial neural Indexed by: networks

نویسندگان

چکیده

The aim of the study was to investigate rail vehicle dynamics under primary suspension dampers faults and explore possibility its detection by means artificial neural networks. For these purposes two types analysis were carried out: preliminary 1 DOF model a second one - passenger coach benchmark tested in multibody simulation software MSC.Adams with use VI-Rail package. Acceleration signals obtained from latter served as an input data into network (ANN). ANNs different number hidden layers capable detecting for trained fault cases, however, achieved accuracy below 63% at best. These results can be considered satisfactory considering complexity dynamic phenomena occurring vibration system vehicle.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier

Microgrids have played an important role in distribution networks during recent years.  DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...

متن کامل

extremal region detection guided by maxima of gradient magnitude

a problem of computer vision applications is to detect regions of interest under dif- ferent imaging conditions. the state-of-the-art maximally stable extremal regions (mser) detects affine covariant regions by applying all possible thresholds on the input image, and through three main steps including: 1) making a component tree of extremal regions’ evolution (enumeration), 2) obtaining region ...

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

DC motor fault diagnosis by means of artificial neural networks

The paper deals with a model-based fault diagnosis for a DC motor realized using artificial neural networks. The considered process was modelled by using a neural network composed of dynamic neuron models. Decision making about possible faults was performed using statistical analysis of a residual. A neural network was applied to density shaping of a residual, and after that, assuming a signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Eksploatacja i Niezawodno??

سال: 2023

ISSN: ['1507-2711']

DOI: https://doi.org/10.17531/ein.2023.1.5